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In this work, the continuous element method which has been used as an alternative to the
"nite element method of vibration analysis of frames is applied to more general structures
like 3-D continuum and rectangular plates. The method is based on the concept of the
so-called impedance matrix giving in the frequency domain, the linear relation between the
generalized displacements of the boundaries and the generalized forces exerted on these
boundaries. For a 3-D continuum, the concept of impedance matrix is introduced assuming
a particular kind of boundary conditions. For rectangular plates, this new development
leads to the solution of vibration problems for boundary conditions other than the simply
supported ones.

( 2001 Academic Press
1. INTRODUCTION

The concept of using an impedance matrix or dynamic sti!ness matrix is well known in the
dynamic analysis of structures. The traditional "nite element method [1] of modal analysis
leads to errors due to the spatial discretization of the structure. The accuracy of results
depends on the number of "nite elements used in the mesh, but the increase in element
number becomes expensive in computer time. It is well known that when using the "nite
element method, the accuracy in mode shapes is not as good as in natural frequencies. An
alternative to these modal methods is the so-called distributed or continuous element
method, based on the exact solution of the partial di!erential equations describing the
system. The distributed element method leads to the use of the impedance matrix of the
non-discretized structure, in contrast with the "nite element method. This continuous
method allows us to obtain the eigensolutions in any frequency bandwidth, whereas the
"nite element method usually gives only a good accuracy for low frequencies.

In the past, the continuous element method was used only for one-dimensional bodies,
like beams, extensible strings and rods [2, 3]. An extension for a 2-D structure idealized by
a rectangular membrane under uniform tension can be found in reference [4].

In these cases, the impedance matrix, Z(u2), which gives in frequency domain the
correspondence between forces and torques exerted on the boundaries and displacements of
these boundaries, can be obtained in analytical form.

A great amount of relevant publications since 1969 about dynamic sti!ness analysis for
vibrations of beam}column structures was undertaken initially by Wittrick [5] and then by
Williams [6]. A review of the works done which include several algorithms for "nding the
0022-460X/01/400795#20 $35.00/0 ( 2001 Academic Press
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modal values of a transcendental problem and the corresponding modal vectors with
special attention for spinning and repetitive structures can be found in reference [7]. The
papers also include several extensions to prismatic isotropic and anisotropic plate
assemblies [8]. However, the analysis is only applicable to structures which are simply
supported at their two ends or for an in"nitely long plate assembly. Spectral methods for the
vibration analysis of plates can be found in reference [9].

An extension of the continuous element method for a 3-D structure can be found in
reference [10], assuming some particular kind of boundary conditions. The corresponding
impedance matrix, Z(u2), is a symmetric matrix depending on the frequency for which the
well-known Leung's theorem [11] can be applied as follows:

M (u2)"!

d

du2
Z(u2) . (1)

In equation (1), M(u2) is the mass matrix of the structure and u is the circular frequency.
Some extensions of the method introduced in reference [10] can be found in reference [12].
For a general 3-D continuum, no closed-form expression for the impedance matrix is
available but it is possible to obtain a spectral expansion of the matrix in terms of some set
of modal frequencies of the structure [10, 12].

Other attempts [13}15], to extend the distributed element method for plates and shells
have been carried out. However, for these structures, the concept of using an impedance
matrix is not well de"ned, leading in some cases [13, 15], to a non-symmetric matrix. In this
work the method used for a 3-D structure in reference [10] is applied to rectangular plates
in order to perform accurate modal analysis. This new development leads to the solution of
vibration problem for boundary conditions other than the simply supported ones.

2. IMPEDANCE MATRIX FOR DISCRETIZED STRUCTURES AND ONE-DIMENSIONAL
BODIES

For a discretized system, described by its sti!ness matrix K and its mass matrix M, the
impedance matrix, Z (u2), is the frequency-dependent matrix de"ned by

Z(u2)"K!u2M , (2)

which relates the applied force amplitudes Q to the displacement amplitudes q. The reduced
impedance matrix of the structure is obtained by splitting the degrees of freedom q into
internal degrees of freedom q

1
and boundary degrees of freedom q

2
. Assuming that the

internal degrees of freedom are free, the linear system

Q"Z(u2) q, q"(q
1
, q

2
)t , Q"(0, Q

2
)t , Z"A

Z
11

Z
12

Z t
12

Z
22
B (3)

can be transformed to Q
2
"Z

c
(u2) q

2
, where the reduced impedance matrix is given by

Z
c
"Z

22
!Z t

12
Z~1

11
Z

12
. (4)

This reduced impedance matrix gives, in the frequency domain, the amplitudes of the forces
exerted on the boundaries in terms of the displacements of the boundaries. In this case, the
reduced mass matrix, M

c
, of the structure is related to the reduced impedance matrix Z

c
by

M
c
(u2)"!(d/du2)Z

c
(u2) . (5)
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For a one-dimensional continuum idealized by extensional bars or beams in bending or
torsional vibrations, it is possible to de"ne, in the frequency domain, the impedance matrix,
Z(u2), giving the correspondence between the forces and the torques exerted on the
boundaries in terms of the displacements of these boundaries. The impedance matrix is
obtained in an analytical form for a homogeneous and constant section beam [16]. Several
codes [3, 17], which use the concept of continuous element, have been developed to perform
accurate modal analysis of frames. In this case, the impedance matrix, Z(u2), is a symmetric
matrix which is a transcendental function of u2, instead of a rational function as in the case
of a discretized structure. However, a very interesting result, obtained by Leung [16], is

M(u2)"!(d/du2)Z(u2) ,

where M(u2) is the so-called dynamic mass matrix which is the symmetric matrix occurring
in the expression of the kinetic energy of the system.

For a system composed of extensional rods or beams, it is possible to perform an accurate
modal analysis by solving the system

Z (u2) X"0, (6)

where X are the eigenvectors and the corresponding frequencies are the roots of the
transcendental equation

det(Z(u2))"0. (7)

The standard methods of modal analysis are not valid in this case. Special algorithms have
been used to solve this problem, using the well-known Williams and Wittrick algorithm [5],
giving in any bandwidth of frequencies the number of roots of equation (7).

3. THREE-DIMENSIONAL CONTINUUM

For a 3-D continuum, the concept of the impedance matrix has been introduced in [10]
and extended in reference [12]. In the following part, the main steps of the method are
recalled.

Considering a 3-D #exible body (Figure 1) free of external body forces. Assume that on
one part (C

1
), of the boundary of the domain (< ) occupied by the body, homogeneous

boundary conditions occur, and on the other part, (C
2
), of the boundary, are assumed

ul "ul C"Nl (xl )q8 (t) , q8 "[q8
1
,2, q8

p
], Nl "[Nl

1
,2,Nl

p
]. (8)

where the imposed displacement "eld ul C is a known function of a "nite number of
displacement parameters q8 (t); xl "&"

OM gives the position with respect to the origin O of any
material point M in (<).

By supposing that the assumed displacements on the boundary (C
2
) are harmonic

functions of time, q8 "qe*ut , in the frequency domain, the motion of the body is de"ned by

L[Ul ]#ou2Ul "0 in (<), Ul "Nl q on (C
2
) , Ul "0l or Fl "r nl "0l on (C

1
) .

(9)

In this formula, ul "Ul e*ut, r8 is the stress tensor (r8 "re*ut ), o is the mass density, no is the
unitarian external vector normal to (C

1
) and L is the usual linear self-adjoint di!erential

operator of the classical elasticity.



Figure 1. Three-dimensional continuum.
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The solution of the linear problem (9) can be obtained in the form

Ul "Pl (xl , u2)q in (<), Pl "[Pl
1
,2,Pl

p
], Pl "Nl on (C

2
) . (10)

The corresponding surface forces Fl
2

applied on the boundary (C
2
) is a linear function of q

Fl
2
"Ul (xl ) q, Ul "[Ul

1
,2,Ul

p
]. (11)

By introducing the generalized forces Q conjugated to q, the work ¹ done by the surface
force Fl

2
can be computed from

¹"PC
2

Fl
2 'U

l dS"PC
2

(Fl
2 'N

l ) dSq"Qtq, Q"PC
2

Nl t 'Fl 2dS"Zq , (12)

where Z":C
2
Nl t 'Ul dS is the (p]p) frequency-dependent impedance matrix, giving the

linear relation between the generalized displacements q and the corresponding generalized
forces Q.

Using the Green formula and taking into account the properties of the di!erential
operator L, it is not di$cult to show that Z(u2) is symmetric [10]. Moreover, these
properties can be used to show that Leung's theorem is also valid in this case, namely

M(u2)"!(d/du2)Z(u2),

where M(u2)":
V
Pl t (xl , u2) 'Pl (xl , u2) dv is the dynamic mass matrix of the structure.

A realistic example of the assumed displacement "eld imposed on the boundary (C
2
) can

be found in reference [10]. In this work, the assumed displacement "eld ul C is a rigid-body
displacement ul C"rl (t)#xl (t)''xl .
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The displacement "eld ul C is expressed in terms of the six parameters.
q"(r

1
, r

2
, r

3
, u

1
, u

2
, u

3
)t, collecting the components of rl (rigid translation of C

2
) and

xl (rigid rotation of C
2
) in the reference frame. The corresponding generalized force

Q conjugated to q is de"ned by Q"(R
1
,R

2
,R

3
,M

1
,M

2
,M

3
)t where (R

1
, R

2
,R

3
) and

(M
1
,M

2
,M

3
) are the components of the resultant force and resultant torque exerted on the

rigid boundary C
2

Rl "PC
2

pnl dS, Ml "PC
2

xl '' (p nl ) dS .

In this case, Z(u2) is a symmetric (6]6) matrix giving the correspondence between the rigid
displacement of the boundary C

2
and the resultant force and torque exerted on this

boundary.
It is interesting to compare this result with the concept of impedance matrix in the case of

Euler}Bernoulli beams. For Euler}Bernoulli beams, every cross-section behaves like a rigid
body. So the boundaries in this case (i.e., the initial and "nal cross-sections of the beam) are
rigid boundaries and the above theory applies. The impedance matrix of the
Euler}Bernoulli beam gives the linear correspondence between the rigid displacements of
the initial and "nal cross-sections of the beam in terms of the resultant force and resultant
torque applied on those sections.

Another interesting result occurring from the above concept of impedance matrix for
a 3-D continuum is that it is possible to obtain an expansion of this matrix in terms of an
in"nite set of vibrations modes of the structure [10, 12].

4. IMPEDANCE MATRIX FOR RECTANGULAR PLATES

Several attempts [13, 14] have been made to extend the concept of impedance matrix to
the analytical vibrations analysis of plates. Only rectangular and circular plates have been
previously considered. In contrast to the case of Euler}Bernoulli beams, even for
rectangular or circular plates, no analytical solutions for the modal analysis of plates are
available, except in the case of a very few particular boundary conditions [8, 18]. It is then
hopeless to obtain an analytical form for the impedance matrix in this case.

4.1. GENERAL EQUATIONS

By considering a rectangular plate of dimension 2a]2b, the transversal displacement
=(x , y , t) in classical Kirchho!}Love theory can be de"ned by

D(D2=)#k=G "0, !a)x)a,

D"Eh3/12(1!l2) , !b)y)b, (13)

where E is the Young's modulus, l the Poisson ratio, h the plate thickness, k the mass
density

D2="

L4=
Lx4

#2
L4=

Lx2 Ly2
#

L4=

Ly4
, =G "

L2=
Lt2

. (14)



800 S. KEVORKIAN AND M. PASCAL
In Kirchho!}Love theory the displacements on the boundaries x"$a are de"ned by the
column matrix

d3
1
(y)"C

=($a, y)

!(L=/Lx) ($a, y)D (15)

associated with a translation =($a, y) and a rotation !(L=/Lx)($a, y) of the "ber
(x"$a, y, (!h/2))z)h/2).

It means that each "ber behaves like a rigid body. Similarly, on the boundaries y"$b,
the displacements are de"ned by the column matrix

d3
2
(x)"C

=(x,$b)

!(L=/Ly) (x,$b)D . (16)

The corresponding forces applied on these boundaries are also de"ned by
a two-component column matrix. For the boundaries x"$a, the surface forces are
de"ned by

F3
1
(y)"C

<
1
($a, y)

M
1
($a, y)D , (17)

where

<
1
($a, y)"!D [L3=/Lx3#l* (L3=/Lx Ly2)]

x/$a
,

M
1
($a, y)"!D[L2=/Lx2#l (L2=/Ly2)]

x/$a

l*"2!l , (18)

denote the e!ective shear force and the bending moment applied on the boundary. Similar
results are obtained [18], for the two-component column matrix

F3
2
(x)"C

<
2
(x,$b)

M
2
(x,$b)D (19)

associated with the surface forces applied on the boundaries y"$b.
As in the case of Euler}Bernoulli beam, the model corresponding to the assumption of

Kirchho!}Love theory of plates is connected to a rigid behavior of some parts of the
boundaries. But in contrast to the case of Euler}Bernoulli beams, the displacements (and
the corresponding forces) are not de"ned in terms of a "nite set of parameters depending
only on time. In plate theory, the displacement (and the forces) depend on the space variable
describing the boundaries.

In order to avoid this dependence, the solution of the vibrations problem is obtained in
terms of a "nite set of base functions. A general solution of the equation (13), can be split up
into four di!erent symmetry cases

=(x, y)"=
SS

(x, y)#=
SA

(x, y)#=
AS

(x, y)#=
AA

(x, y) . (20)

The four symmetry cases are decoupled and therefore treated separately. One assumes that
each one of these four displacements, denoted by=(x, y) for reason of simpli"cation, can be
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expressed in the form

=(x, y)"
N
+
n/1

X
n
(x) f

n
(y)#

N
+
n/1

>
n
(y) h

n
(x) , (21)

where f
n
(y) and h

n
(x) are sinusoidal functions, their forms depend on the symmetries which

are considered. X
n
(x) and >

n
(y) are obtained from the conditions that X

n
(x) f

n
(y) and

>
n
(y) h

n
(x) are solutions of equation (13) in the frequency domain. It is not di$cult to show

according to the order of equation (13) and the conditions of symmetry, that each function
X

n
(x) and >

n
(y) depends on two constants. The solution =(x, y) given by equation (21)

depends on a set of 4N constants c.
It is important to underline that the functions f

n
(y) and h

n
(y) are orthogonal functions,

i.e.,

P
b

0

f
n
(y) f

m
(y) dy"k

n
d
mn

, P
a

0

h
n
(x) h

m
(x) dx"j

n
d
mn

, (22)

where d
mn

is the Kronecker delta function

4.1.1. Projection method

A "rst method to avoid the spatial dependence of the boundary conditions, is obtained by
projection of the displacements and of the forces on these boundaries onto a set of functions
f
n
(x) and g

n
(y). A vector of generalized displacements is de"ned by

q"

P
b

0

2

Jk
m

=(a, y) f
m
(y) dy

P
b

0

!

2

Jk
m

L=(a, y)

Lx
f
m
(y) dy

P
a

0

2

Jj
m

=(x, b) h
m
(x) dx

P
a

0

!

2

Jj
m

L=(x, b)

Ly
h
m
(y) dx

m/1,2,N

. (23)

Similarly, a vector which contains the generalized forces can be de"ned as

Q"

P
b

0

2

Jk
m

<
1
(a, y) f

m
(y) dy

P
b

0

!

2

Jk
m

M
1
(a, y) f

m
(y) dy

P
a

0

2

Jj
m

<
2
(x, b) h

m
(x) dx

P
a

0

!

2

Jj
m

M
2
(x, b) h

m
(y) dx

m/1,2,N

. (24)
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Then, the generalized displacements q and the generalized forces Q on the boundaries are
given by

q"D3 c , Q"F3 c. (25, 26)

By elimination of c, in equations (25) and (26), one obtains the impedance matrix which
relates the generalized forces to the generalized displacements :

Q"Zq"F3 D3 ~1q . (27)

It leads to the following de"nition of the impedance matrix Z:

Z"F3 D3 ~1 . (28)

4.1.2. Energy method

By rewriting solution (21) in the form

=(x, y)"g
1
=

1
(x, y)#g

2
=

2
(x, y)#2#g

4N
=

4N
(x, y) . (29)

where c"(g
1
2g

4N
)T, the generalized displacements d"(d3

1
d3
2
)T of the boundaries can be

expressed in terms of the 4N parameters g
i
by

d"g
1
d
1
#g

2
d
2
#2#g

4N
d
4N

. (30)

Similarly, the generalized forces F"(F3
1
F3

2
)t exerted on the boundaries can be written as

F"g
1
F

1
#g

2
F
2
#2#g

4N
F

4N
. (31)

The work done by the forces exerted on the boundary (C) of the plate is given by

¹"PC

dtFds. (32)

By introducing the notation

G
i
"PC

dt
i
F ds (i"1,2, 4N) (33)

it follows that

G
i
"

4N
+
j/1

Z
eij

g
j
, (34)

where

Z
eij
"PC

dt
i
F
j
ds , (35)

G"Z
e
(u) c, G"(G

1
2G

n
)t, c"(g

1
2g

n
)t (36)

and Z
e
"(Z

eij
) is the impedance matrix which relates the parameters c and the

corresponding parameters G conjugated to c. It is not di$cult to show that this new
impedance matrix is symmetric.

In the following, a relation between the two impedance matrices Z and Z
e
will be shown.
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4.1.3. Comparison of the two methods

From equation (23) and properties (22) of the function f
m
(y), one deduces

=(a, y)"
N
+

m/1

q
m1

1

2 Jk
m

f
m
(y) , !

L=
Lx

(a, y)"
N
+

m/1

q
m2

1

2 Jk
m

f
m
(y),

=(x, b)"
N
+

m/1

q
m3

1

2Jj
m

h
m
(x),

L=
Ly

(x, b)"
N
+

m/1

q
m4

1

2 Jj
m

h
m
(x) . (37)

Similarly, from equations (24) and (22), one deduces:

<
x
(a, y)"

N
+

m/1

Q
m1

1

2 Jk
m

f
m
(y), M

x
(a, y)"

N
+

m/1

Q
m2

1

2Jk
m

f
m
(y) ,

<
y
(x, b)"

N
+

m/1

Q
m3

1

2 Jj
m

h
m
(x), M

y
(x, b)"

N
+

m/1

Q
m4

1

2 Jj
m

h
m
(x) . (38)

It follows that

4 P
b

0

F3 t
1
d3
1
dy"4P

b

0

(=(a, y) '<
x
(a, y)#M

x
(a, y) 'U

x
(a, y)) dy

"4P
b

0A
N
+

m/1

q
m1

1

2Jk
m

f
m
(y)BA

N
+
p/1

Q
p1

1

2Jk
p

f
p
(y)Bdy

#4P
b

0
A

N
+

m/1

q
m2

1

2Jk
m

f
m
(y)BA

N
+
p/1

Q
p2

1

2Jk
p

f
p
(y)Bdy

"

N
+

m/1

(q
m1

Q
m1

#q
m2

Q
m2

) . (39)

One can easily show that similarly

4P
a

0

F3 t
2
d3
2
dx"

N
+

m/1

(q
m3

Q
m3

#q
m4

Q
m4

) . (40)

As a result, the work done by the generalized forces on the boundary (C) is given by

¹"qTQ"cTD3 TF3 c , (41)

where q and Q are the generalized displacements and the generalized forces de"ned by
equations (23) and (24).

On the other hand, from equations (32) and (36)

¹"cTG"cTZ
e
c , (42)

it follows that

Z
e
"D3 TF3 . (43)
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From equations (28) and (43), one obtains

Z
e
"D3 TZD3 . (44)

As the impedance matrix Z
e
is symmetric, it is obvious that

ZT
e
"Z

e
"(D3 TZD3 )T (45)

and results in

D3 TZTD3 "D3 TZD3 , (46)

so the impedance matrix Z is also symmetric. In contrast to the projection method, the
impedance matrix Z

e
is obtained without the inversion of any matrix.

In a "rst example, the method is applied to the vibrations of a rectangular plate simply
supported on two opposite edges. In this particular case, the analytical solution of the
problem is known [8, 18]. Then the more general case of rectangular plate with any
boundary conditions is investigated.

4.2. RECTANGULAR PLATE WITH TWO OPPOSITE EDGES SIMPLY SUPPORTED (Figure 2)

The boundary conditions are

=(0, y)"=(a, y)"0, M
x
(0, y)"M

x
(a, y)"0. (47)

By assuming that the solution is a solution of the LeH vy type, the displacement solution has
the form

=(x, y)"
N
+

m/1

>
m
(y) sinA

mnx

a B. (48)

which means that the boundary conditions are ful"lled whatever the value of y. So
governing equation (13) becomes

>@@@@
m

(y)!2 A
mn
a B

2
>@@

m
(y)#GA

mn
a B

4
#

ohu2

D H>m
(y)"0. (49)
Figure 2. Rectangular plate with two opposite edges simply supported.
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The solution of this equation is >
m
(y)"exp(p

m
y), with

p2
m
"(mn/a)2GJohu2/D . (50)

Therefore, one obtains four values of p
m
,Gp

m1
and Gp

m2
, where p

m1
and p

m2
are de"ned

by the relations

p
m1

"J(mn/a)2#Johu/D , p
m2

"J(mn/a)2!Johu2/D .

Two possibilities may be taken into consideration, that is, p
m1

and p
m2

are both real, or

p
m1

is real and p
m2

is complex, so the solution has the form if (mn/a)2'Johu2/D .

>
m
(y)"A

m
cos(p

m1
y)#B

m
sin(p

m1
y)#C

m
cos(p

m2
y)#D

m
sin(p

m2
y)

and if

(mn/a)2(Johu2/D ,

>
m
(y)"A

m
cos(p

m1
y)#B

m
sin(p

m1
y)#C

m
cosh(p

m2
y)#D

m
sinh(p

m2
y),

where A
m
, B

m
, C

m
, D

m
are integration constants which depend on the boundary conditions.

In the following, the cases p
m1

real and p
m2

complex are solved.

4.2.1. Projection method

The generalized displacements are given by the relationships

q
m
"

i
g
g
g
j
g
g
g
k

P
a

0

2

Ja
=(x, 0) sinA

mnx

a Bdx

P
a

0

2

Ja A!
L=(x, 0)

Ly B sinA
mnx

a Bdx

P
a

0

2

Ja
=(x, b) sinA

mnx

a Bdx

P
a

0

2

Ja A
L=(x, b)

Ly B sinA
mnx

a Bdx

e
g
g
g
f
g
g
g
h

. (51)

In the same way, the generalized forces are de"ned by

Q
m
"

i
g
g
g
j
g
g
g
k

P
a

0

2

Ja
<
y
(x, 0) sinA

mnx

a Bdx

P
a

0

2

Ja
M

y
(x, 0) sinA

mnx

a Bdx

P
a

0

2

Ja
<
y
(x, b) sinA

mnx

a Bdx

P
a

0

2

Ja
M

y
(x, b) sinA

mnx

a Bdx

e
g
g
g
f
g
g
g
h

. (52)
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In this case, it is important to note that there is a total decoupling between terms for
di!erent values of m. This is due to the fact that the functions sin (mnx/a) are orthogonal to
each function depending on x, occurring in equation (48). By eliminating the integration
constants, one obtains a relationship between the generalized forces and the generalized
displacements. By introducing an impedance matrix for one value of m,

i
g
j
g
k

Q
m1

Q
m2

Q
m3

Q
m4

e
g
f
g
h

"Z
m

i
g
j
g
k

q
m1

q
m2

q
m3

q
m4

e
g
f
g
h

with Z
m
"F3

m
D3 ~1

m
. (53)

Finally, one obtains the expression of the impedance matrix:

Z"C
Z

1
0 0

0 } 0

0 0 Z
N
D , (54)

where

Z
m
"

D

b3

F
m6

!F
m4

b F
m5

Fm
3
b

!F
m4

b F
m2

b2 !F
m3

b F
m1

b2

F
m5

!F
m3

b F
m6

F
m4

b

F
m3

b F
m1

b2 F
m4

b F
m2

b2

, m"1, 2,2, N.

The functions F
mi

are de"ned by

F
m1
"!((p

m2
sinh(p

m1
)!p

m1
sinh(p

m2
))(p2

m1
#p2

m2
))/d,

F
m2
"!((p

m1
cosh(p

m1
) sin (p

m2
)!p

m2
sinh(p

m1
) cos(p

m2
))(p2

m1
#p2

m2
))/d,

F
m3
"!(p

m1
p
m2

(p2
m1

#p2
m2

) (cosh(p
m1

)!cos(p
m2

)))/d,

F
m4
"(p

m1
p
m2

[(p2
m1

#p2
m2

) (cosh(p
m1

) cos(p
m2

)!1)#2p
m1

p
m2

sinh(p
m1

)p
m2

])/d,

F
m5
"(p

m1
p
m2

(p2
m1

#p2
m2

) (p
m2

sin (p
m2

)#p
m1

sinh(p
m1

)))/d,

F
m6
"!(p

m1
p
m2

(p2
m1

#p2
m2

)(p
m2

cosh(p
m1

)sin (p
m2

)#p
m1

sinh(p
m1

)sin (p
m2

)))/d,

where

d"2p
m1

p
m2

(cosh (p
m1

) cos (p
m2

)!1)!(p2
m1

#p2
m2

) sinh(p
m1

) sin (p
m2

).

It is obvious that the derived impedance matrix Z is symmetric.

4.2.2. Energy method

Formula (48) gives

=(x, y)"g
1
=

1
(x, y)#g

2
=

2
(x, y)#2#g

4N
=

4N
(x, y), (55)
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where the parameters g
i
are de"ned by

g
1`4(m~1)

"A
m
, g

2`4(m~1)
"B

m
, g

3`4(m~1)
"C

m
, g

4`4(m~1)
"D

m
,

m"1, 2,2, N.

The displacement d"[=(x, 0),!(L=/Ly)(x, 0),=(x, b), (L=/Ly)(x, b)]T, on the
boundaries is given in terms of the 4N parameters g

i
by

d"g
1
d
1
#g

2
d
2
#2#g

4N
d
4N

. (56)

In the same way, F"[<
y
(x, 0), M

y
(x, 0),!<

y
(x, b),M

y
(x, b)], is written as

F"g
1
F

1
#g

2
F
2
#2#g

4N
F

4N
. (57)

Let us introduce G conjugated to g computed by the work ¹ and the impedance matrix
which relates G to g

G
i
"P

a

0

dt
i
F dx"+

j

Z
eij

g
j
, Z

eij
"P

a

0

dt
i
F

j
ds , G"Z

e
(u) g. (58)

The energy impedance matrix has also been shown to be given by

Z
e
"D3 tF3 . (59)

4.3 GENERAL CASE

In the following, the general case of a rectangular plate with any boundary conditions is
considered. To solve this problem, the solution of equation (13) is split, as in equation (20),
into four particular solutions with special assumptions of symmetry or antisymmetry. Then
one needs to consider only the case of double symmetry (the three other cases can be solved
in the same way).

One assumes that the solution has the form

=(x, y)"
N
+

m/1

>
m
(y) cos A

mnx

a B#
N
+

m/1

X
m
(x) cosA

mny

b B ,

where X
m
(x) and >

m
(y) are functions which satisfy (13) and the symmetry conditions. So

each of them depends on two constants, as can be seen in the formulas

X
m
(x)"A

m
cos (xJj2#(mn/b)2 )#B

m
cos (xJ(mn/b)2!j2 ) ,

>
m
(y)"C

m
cos (yJj2#(mn/a)2 )#D

m
cos (yJ(mn/a)2!j2 ) ,

where

j"u2o/D

In this case one assumes that (mn/a)2!j2'0, otherwise the function

cos (yJ(mn/a)2)!j2) must be changed by cosh ( yJDj2!(mn/a)2D ).
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In the same way, one can assume that (mn/b)2!j2'0 which results in the relations

d"C
d3
1
(a, y)

d3
2
(x, b)D"D3 c, F"C

F3
1
(a, y)

F3
2
(x, b)D"F3 c ,

where c"(A
m
B
m
C

m
D

m
)T m"1,2, N.

4.3.1. Projection method

This method uses the projection of displacements and forces onto the functions
cos (mny/b) and cos (mnx/a). By introducing q and Q de"ned by

q"

i
g
g
g
j
g
g
g
k

S
8

b P
b

0

=(a, y) cos A
mny

b Bdy

S
8

a P
a

0

=(x, b) cosA
mnx

a Bdx

S
8

b P
b

0

!

L=(a, y)

Lx
cosA

mny

b Bdy

S
8

a P
a

0

!

L=(x, b)

Ly
cos A

mny

a Bdx

e
g
g
g
f
g
g
g
h

,

m/1,2,N

(60)

Q"

i
g
g
g
j
g
g
g
k

S
8

b P
b

0

<
1
(a, y) cosA

mny

b Bdy

S
8

a P
a

0

<
2
(x, b) cosA

mnx

a Bdx

S
8

b P
b

0

M
1
(a, y) cosA

mny

b Bdy

S
8

a P
a

0

M
2
(x, b) cosA

mnx

a Bdx

e
g
g
g
f
g
g
g
h

,

m/1,2,N

(61)

one notices, that contrary to the plate with two opposite edges simply supported, there is
a coupling between the terms for di!erent values of m.

The relation between the generalized displacements q
m

and the constants c introduces
a (4, 4N) matrix D3

m
; similarly, one obtains a relation between the generalized forces and the

constants c, using a (4, 4N) matrix, F3
m
,

q
m
"D3

m
c, Q

m
"F3

m
c. (62)

Then by de"ning q as the vector of all the generalized displacements and Q as the vector of
all the generalized forces

q"(q
i
)
i/1,2,N

, Q"(Q
i
)
i/1,2,N

. (63)
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One obtains the relation between q and c, Q and c, using (4N, 4N) square matrices D3 and F3 .
These matrices are block matrices de"ned by

D3 "

i
g
j
g
k

D3
1

F

D3
N

e
g
f
g
h

F3 "

i
g
j
g
k

F3
1

F

F3
N

e
g
f
g
h

.

Then one deduces

q"D3 c, Q"F3 c. (64)

By eliminating c, these equations, the impedance matrix which relates generalized forces to
generalized displacements is obtained as

Q"Zq"F3 D3 ~1q.

4.3.2. Energy method

The work done by the forces on the boundaries, is given by

¹"4A P
b

0

F3 t
1
d3
1
dy#P

a

0

F3 t
2
d3
2
dxB . (65)

The relationships

d3
1
(a, y)"D

1
(y) c , d3

2
(x, b)"D

2
(x) c, (66)

F3
1
(a, y)"U

1
(y) c , F3

2
(x, b)"U

2
(x) c , (67)

are de"ned where D
1
(y), D

2
(x), U

1
(y), U

2
(x) are matrices of dimension (2, 4N).

Inserting (66) and (67) into equation (32), one can write

¹"ctA4 P
b

0

Dt
1
U

1
dy#4 P

a

0

Dt
2
U

2
dxB c"ctZ

e
c .

The impedance matrix is given by the formula

Z
e
"4 P

b

0

Dt
1
U

1
dy#4 P

a

0

Dt
2
U

2
dx . (68)

By introducing C conjugated to c computed by the work ¹ done by the boundary forces

C"Z
e
c .

5. NUMERICAL EXAMPLES

In the above study, the general solution of the vibrations equation of a rectangular plate,
is expressed as a function of a truncated LeH vy series:

=(x, y)"g
1
=

1
(x, y)#g

2
=

2
(x, y)#2#g

4N
=

4N
(x, y) (69)
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with

g
1`4(m~1)

"A
m
, g

2`4(m~1)
"B

m
, g

3`4(m~1)
"C

m
, g

4`4(m~1)
"D

m
,

m"1, 2,2, N.

This assumption allows one to express the generalized displacements and the generalized
forces on the edges of the plate as a function of the parameters (g

1
,2, g

4N
). One obtains

d"D3 (s, u) c , F"F3 (s, u) c,

where

c"(g
1
2g

4N
)T. (70)

The determination of the eigenvalues of the plate, corresponding to the di!erent
boundary conditions, is equivalent to the determination of the parameters
(g

1
,2, g

4N
) in order to ful"ll these boundary conditions. For the vibrations of a plate

with clamped boundaries, the constants c are de"ned by the condition d"D3 (s, u) c"0
on (C). For the vibrations of a plate with free boundaries, c are de"ned by F"F3 (s, u) c"0
on (C).

As it is not possible to obtain the analytical solution of this problem, the boundary
conditions are projected onto a "nite set of base functions. To obtain the vibration modes of
the plate with clamped boundaries, one replaces the condition d"0 with :CF3 td ds"0. To
obtain the vibration modes of the plate with free boundaries, one replaces the condition
F"0 with :CD3 tF ds"0 which is equivalent to

Z
e
(u) c"0, Z

e
"PC

D3 tF3 ds. (71)

In this case, the eigenpulsations are the roots of the equation

det(Z
e
(u))"0. (72)

In the following, one uses this method for the modal analysis of a rectangular plate with two
edges simply supported, for a free}free plate and for a plate with two clamped edges.

5.1. RECTANGULAR PLATE WITH TWO OPPOSITE EDGES SIMPLY SUPPORTED

One considers a rectangular plate (Figure 3) simply supported on the edge x"0 and on
the edge x"a, with dimensions a"25)4 cm, b"38)1 cm, h"3)175mm, E"68 948MPa,
o"2700kg/m3, l"0)333, and searches the eigenfrequencies which are in the bandwidth
(2300}3000 Hz) (Table 1). The results obtained from the energy method are compared with
those given by the projection method by Fleuret [15], and with those of the "nite element
code CASTEM.



Figure 3. Eigenforms of a simply supported rectangular plate.

TABLE 1

Comparison of results (in Hz) for a rectangular plate with two opposite edges simply supported

Value of m Energy Projections CASTEM

4 2337)39 2338)40 2338)862
1 2381)98 2382)98 2383)802
4 2683)69 2683)98 2682)774
2 2786)71 2785)84 2782,465
3 2793)36 2797)67 2792)572
5 2971)09 2971)45 2971)299

ACCURATE VIBRATION ANALYSIS 811
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5.2. RECTANGULAR PLATE WITH FREE BOUNDARIES

The modes with the double symmetry property of a rectangular plate (Table 2) having as
dimensions (Figure 4) a"45 cm, b"30 cm, h"0)3 cm, E"70 000MPa, o"2790kg/m3,
l"0)333 are considered. The results obtained from the energy method are compared to
those given by the projection and the "nite element methods.
Figure 4. Symmetric}symmetric eigenforms of a free rectangular plate.

TABLE 2

Comparison of results (in Hz) for a rectangular plate with free boundaries

Energy Projections CASTEM

76)29 76)56 76)622
178)89 179)97 180)05
350)05 351)92 352)57
431)42 432)57 434)16
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5.3. RECTANGULAR PLATE WITH TWO OPPOSITE EDGES CLAMPED

The modes with the double symmetry property of a rectangular plate (Table 3) having the
same dimensions as before is considered. The results are compared with the "nite element
code CASTEM (Figure 5). Good agreement for the three kinds of boundary conditions, has
been obtained.
TABLE 3

Comparison of results (in Hz) for a rectangular plate with two opposite edges clamped

Energy CASTEM

79)22 79)61
426)26 431)80
705)05 715)06

1061)47 1069)49

Figure 5. Symmetric}symmetric eigenforms of a rectangular plate with two opposite edges clamped.
6. CONCLUSION

In this paper, a new concept of an impedance matrix for the analysis of a continuous
system is introduced, this formulation being consistent with the concept of impedance
matrix of discretized structures and beam}column structures. The method is applied to
rectangular plates leading to the solution of vibration problem for boundary solutions other
than the simply supported ones.



814 S. KEVORKIAN AND M. PASCAL
REFERENCES

1. J. F. IMBERT 1995 Analyse des structures par e& le&ments ,nis. Paris: Cepadues Ed.
2. V. KOLOUSEK 1973 Dynamics in Engineering structures. London: Butterworth.
3. D. POELAERT 1983 Proceedings of the fourth Symposium on Dynamics and Control of ¸arge

Structures, Blacksburg, <A, ;.S.A. Distel: a distributed element program for dynamic modelling
and response analysis of #exible structures.

4. M. PASCAL and M. SYLLA 1993 ¸a Recherche Ae& rospatiale 2, 67}77. Modèle dynamique par
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